江苏自考网欢迎各位自考生,今天是
江苏自考网上报名系统 江苏自考新闻 自考准考证 江苏助学自考(小自考) 江苏自考100问 自考13000英语专升本课程学习
南京 苏州 昆山 徐州 无锡 常州 镇江 扬州 南通

GPU恐成最大帮凶未来病毒运行技术前瞻

2014年02月01日信息来源:相关网站
恶意软件的编写者们不断地在寻找新的方法来伪装他们的代码,以求逃过杀毒软件的检测。目前有两种新的代码伪装技术对现有的恶意代码检测分析系统形成了挑战,这就是脱壳(unpacking)和运行时多态(run—timep01yITlorphism)。更为危险的是,脱壳和运行时多态都可以利用GPu进行加速。这样一来,之前困扰恶意软件编写者的那些高负荷计算运行方法,都可以利用GPU强大的并行计算能力进行处理。这将导致我们在未来而临破坏力更为强大、狡猾而令人防不胜防的恶意软件。
  
  加壳和变身恶意软件感染计算机的方法
  
  本文中将提到多次有关汁算机病毒、僵尸客户端、木马程序、后门程序以及恶意软件等诸多对电脑经常程序运行产生危害的非法软件。为了方便起见,本文全部将其称呼为“怀有恶意性质的软件”或“恶意软件”。
  在正常情况下,这些怀有恶意性质的软件,会悄悄地插入你的系统进程中,并在后台执行一些不可告人的操作。从硬件角度来分析,传统计算机系统中,只有CPU能完成这样的任务。原因首先是CPU可以执行任意类型的代码,可编程性极强;其次,CPU是系统的核心,拥有执行任务相当高的权限;其三,现代CPU性能都很不错,多核心技术的普及让这些怀疑恶意性质的软件即使运行起来,用户也很难察觉——因为你的CPU某些核心往往不会满载,NVlDIA,已经分别针对其GPU发布了相应的SDK(software developmentkits,软件开发包),用于帮助程序员执行可以在GPUJL运行的通用代码。这些代码甚至可以使用传统的C语言来编写,比较常见的有NVIDIA和CUDA或者AMD的Stream。
  目前,最新一代的GPU(比如支持DirectX 11的NVIDIA GeForce GTX500系列),已经允许CPU和GPU上运行的代码完全相同(如NVIDIA所推出的CUDA-X86计划)。在这种情况下,GPU通用计算被广泛应用于各类计算任务中。当然,这部分计算任务还包括那些“雄心勃勃”的恶意软件代码编写者。考虑到通用计算的巨大潜力,做出“恶意软件编写者们将利用现代GPU的强大性能,来为自己牟利”的预测就是很自然的事情了。
  当然,如果恶意软件需要正常的运行,必须有两个先决条件:1.躲避现有反恶意软件的防御能力;2.超越分析人员人工解析的能力。很多情况下,对恶意软件的人工解析是确定、部署相应的检测并开发反制软件的先决条件。为了达到这个目的,恶意软件往往使用两种手段来阻止各种反恶意软件发现,并防御自己的运行——这就是加壳和多态性,这是使用最为广泛的、用于逃避反恶意软件扫描和防御的技术。除此之外,在实际应用中,代码伪装和反调试技巧常常被用于阻碍对恶意软件代码所实施的逆向分析工程。
  所谓加壳,就是将自己真正需要运行的内容保护起来。打比方来说,炸弹外面包上鲜花,然后放在邮包里,邮包放在旅行箱里,旅行箱被放在运输飞机的某一处。在加了三层壳子后,炸弹看起来像个正常的旅行箱,但一旦飞机上天,爆炸后的后果就不堪设想。恶意软件往往将自己伪装成正常执行的程序,骗取系统或者反病毒软件,甚至是用户本人的信任,最终实现其不可知的目的。
  而多态性,是指恶意软件在执行时,不将自己全部暴露在内存中——如果全部暴露,就可能难以逃脱反恶意软件的扫描。因此,恶意软件将自己的一小部分暴露在内存中,然后在需要的时候再暴露另一部分。简而言之就是“化整为零,按需调用”。这个看起来相当“有效率”的方法,带来了恶意软件非常难以防御的特性。因为程序不是人,它们只能机械地执行扫描和对比的任务。如果反病毒程序已经确定了几种恶意软件“变身”的方法,那么只要恶意软件下次改变一下暴露顺序,或者掩盖一下自己的执行目标,反病毒软件就可能无法侦测。
  迄今为止,这些所有的恶意软件都利用了目前程序执行环境的复杂性,尽可能隐秘地逃脱反恶意软件的侦测。更糟的是,大部分研究反恶意软件的安全研究人员们只关注于IA-32架构,因为绝大多数恶意软件都运行在X86系统上。但令人担心的是,GPU通用计算的来临,为恶意软件的编写者们带来了一扇机会之窗,因为大多数安全研究者对于GPU的执行环境和指令集架构并不熟悉。利用GPU通用计算,恶意软件可能会有效对抗现有的防御手段。
  
  机会还是威胁GPU通用计算的发展
  
  接下来,让我们先暂停一下对恶意软件的恐惧,进入GPU的世界。GPU通用计算最近几年来飞速发展,当GPU本身可编程性和灵活性大大提高后,很多人开始着手探索如何利用GPU架构进行大规模的并行计算,毕竟GPU拥有系统中最为强劲的浮点计算能力,仅仅作为3D计算显然相当可惜。但GPU通用计算需要专用API才能在GPU上完美运行。一般的图形APIMDlrectX和OpenGL等,都不能很好地进行通用计算。
  对传统GPU来说,无论是GPU本身设计还是调用方式都尽可能为GPU需要执行的图形计算优化。因此你如果想利用GPU庞大的计算资源,那些需要计算的数据和变量,必须映射为图形学对象,算法处理必须被表述为像素和顶点处理的形式,假装是在进行图形计算一样。这种“假装”的形式让程序员感到很束缚。因为传统GPU缺乏方便的数据类型,基本的计算函数,以及一个一般化的内存访问模型,使得它对于习惯于工作在传统编程环境下的程序员们来说没有多少吸引力。
  进入DirectX 10时代后,NVIDIA提出了CUDAfCompute UnifiedDevice Architecture)这样一个相当富有创造力的通用运算API架构。有了这个API之后,程序员就不需要在自己的大脑中“映射”各种数据,APl作为沟通桥粱已经承担了数据转换、程序编译等任务。这样一来,GPU就能很好地发挥计算效能。与此同时,AMD也提供了对应自家GPU产品的通用计算方法,被称为Stream。
  CUDA由一个C语言的极小扩展集和一个运行库组成,这个运行库提供的函数能够控制GPU,以及设备专有函数和相应的数据。从相对宏观的角度看,一个CUDA程序由两部分组成,一个运行在CPU上,另一个称之为“kernel”,是运行于GPU上的并行化部分。不过GPU上的kernel是不能独立运行的,它只能依赖于CPU上的父进程调用,因此,它不能被作为一个独立的程序直接初始化。
  CUDA中的kernel在运行时被划分为多个线程来执行,这些线程被组织成多个线程块,然后交由GPU的CUDA Core--也就是常说的流处理器来执行。在GeForceGPU中,每个处理单元会包含8个SIMD流处理器组。这8个SIMD流处理器组会根据一个线程调度器的调配,令多个线程块尽可能高效率、最大化地运作,保障整个GPU的运行效率。
  除了编程执行外,CUDA还提供了用于在主机和GPU问进行数据交换的函数,所有的I/O动作都通过PCI-E总线进行。不仅如此,存储器操作还可以通过DMA进行,这样就可以大幅度提高CPU和GPU工作的并行程度。在内存一致性方面,主机的分页锁定内存中的一个块可以被映射到GPU的地址空间里,使得在CPU上运行的普通程序和GPU上运行的kernel能够直接访问相同的数据。
  总的来说,无论是CUDA还是Stream,都是尽可能利用GPU'性能的API。恶意软件要运行得有效率,就绕不开这两个API。下面就让我们来看看恶意软件是如何在GPU上捣鬼的。
  上文说过,运行于GPU上的kernel必须依赖CPU上的父进程。恶意软件也是如此,那些能利用GPU超强性能的恶意软件往往包含两个部分--GPU部分和CPU部分。说得更细致一些,那就是恶意软件在执行时,会裁入GPU端的设备代码,分配CPU和GPU都可以访问到的一块内存区域,先初始化数据,然后调度GPU代码开始执行。当然,和所有利用GPU的程序一样,恶意软件可以在GPU和CPU之前来回转换,或者单独让GPU运行或者只让CPU运行,也可以同时在GPU和GPU并行执行。
  当然,恶意软件编写者不仅仅看中了GPU的计算能力,他们还需要更自由、不被监视的执行空间。恰好,在GPU这里,恶意软件可以与CUDA库静态链接,成为一个独立的可执行程序,这样一来,恶意软件就不需要在被感染的系统中安装额外软件。更令人难以接受的是,目前GPU端的代码执行,以及CPU和GPU之间的通讯,都不需要管理员特权。这意味着,恶意软件可以在任何用户权限下成功运行——它不需要任何权限,也没人监控它。这就令恶意软件隐蔽性更高、更容易被运行起来。
`NextPage`  束手无策?恶意软件如何利用GPU资源
  
  前文已经描述了恶意软件感染系统的方式,并且说明了它利用GPU进行并行加速的可能性。接下来,研究人员将通过实例来模拟这个过程。在模拟中使用的原型代码不仅仅证明了恶意软件利用GPU的可行性,而且已经确信对现有的分析检测系统构成了不容忽视的挑战。
  研究人员选择使用NVIDIACUDA来部署源代码,当然攻击者可以很容易地使用其他GPU代码版本,甚至还能在不同GPU之间进行转换。目前攻击者只要掌握了CUDA和Stream,就能基本上掌握100%的GPU恶意软件攻击范围。还有更令人恐惧的——OpenCL是一个跨平台的GPGPU框架,致力于提供统一的API,如果它得到广泛引用,那么就连插入不同版本的代码也完全没有必要,只要平台支持OpenCL,就可能被恶意软件利用你电脑中的GPU加速运行。
  1.自脱壳GPU加速
  前文已经简单介绍了恶意软件的加壳技术。当然,飞机上放炸弹的例子只是用于破坏性的炸弹。在软件这里,经过多层加壳伪装后的代码,需要脱壳解秘,才能变成真正的恶意代码危害系统。
  一般情况下,恶意软件设计有自脱壳程序,这个程序在运行时会首先解包被隐藏的代码,然后将控制权移交给已在主机内存中变形为真实代码的恶意软件。当然,一种恶意软件可能不止使用一种加壳程序,使用不同的变换方法或者改变解包程序的代码,攻击者可以容易地制造同一个恶意软件的全新变种,还能有效地躲避检测程序。
  目前传统恶意软件的自脱壳算法都不特别复杂,因为要考虑到CPU的计算能力,一旦显著拖累系统,恶意软件不但容易被察觉,还给自己的运行带来了不利影响。但利用GPU强大的并行计算能力后,恶意软件的作者能够利用极其复杂的加密算法

GPU恐成最大帮凶未来病毒运行技术前瞻

以上是关于GPU恐成最大帮凶未来病毒运行技术前瞻已公布的相关信息,请自考生们认真查看,如果你想获取最新的江苏自考新闻或者江苏自考问题答疑,可以扫描江苏自考网公众号二维码,我们会最第一时间内为你解答。

➤自考有疑惑或想进学习群,请联系江苏自考网客服

(编辑:admin)  H:0
江苏自考网微信公众号